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Abstract—Luikov and Mikhailov's mass- and heat-transfer equations for the porous bodies have been

modified to include the molar (hydrodynamic) heat and mass transfer. A problem dealing with the

combined molar and molecular heat and mass transfer in a semi-infinite cylindrical porous body

under boundary conditions of the first kind (constant heat- and mass-transfer potentials on the surface)

has been studied neglecting heat conduction and mass diffusion in the axial direction. The equations
have been solved by the use of Laplace and Hankel transforms.

NOMENCLATURE

t temperature [°C];

u, moisture content [g moisture/g dry
matter];

r, radial co-ordinate [cm];

R, bounding surface radius {cm];

z, axial co-ordinate [cm];

™, time [s];

A, thermal conductivity coefficient {cal/cm
s degC};

G, specific heat capacity of moist body
[cal/g degC];

yo,  density of absolutely dry matter [g/cm?];

a, thermal diffusivity coefficient [cm2/s];

a’, moisture conductivity coefficient
[cm?/s];

Ps specific heat of evaporation [cal/g];
3, thermal gradient coefficient [1/degC];

€, coefficient of moisture internal evapora-
tion;
V2,  uniform average velocity of the mois-

ture (liquid or vapour) in the capillaries
of the cylinder in the direction of :z
decreasing;

Bessel function of the nth order and of
first kind.

Jn(x),

1. INTRODUCTION
Luikov anp MikHAILOV [1] have considered the
following system of equations of heat and mass
transfer for analysing various problems in drying
processes under different boundary conditions.

ot » cu
(:7;=av“f+(€P/C)'3'; )]
M @V + sV 2)
or

The above equations have been derived on the
assumption of very slow diffusive motion of
moisture in pores and capillaries in the body. The
effect of this motion has therefore been neglected
in comparison with the heat conduction and
mass diffusion effects in the above derivation.
However, if the capillary motion of the moisture
in the body is also taken into account the above
equations are modified as (6) and (7) below.
With this modification we discuss a problem
dealing with the simultaneous heat and mass
transfer for a semi-infinite porous circular
cylinder, under boundary conditions of the first
kind neglecting the mass diffusion and heat
conduction effects in the axial direction and con-
sidering that the moisture (liquid or vapour)
moves in the capillaries with a constant average
velocity ¥, in the direction of z (current axial
co-ordinate) decreasing.

2. BASIC EQUATIONS
The equation of Luikov and Mikhailov for
mass diffusion in a porous medium [equation (2)]
can be written as

) .
vo5 = — divJar 3)
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Where
&)
The above equation holds on the assumption
of very slow motion of moisture in pores and
capillaries in the body. If in body capillaries and
pores, not only mass diffusion but also hydro-
dynamic motion of moisture (liquid or vapour)
occurs at some average velocity ¢ (¢ = const.)
then differential mass-transfer equation will be
as follows:

Jair=—a'voSu—a oVt

au .
Tog == div (Jait + youv) =
— vyo grad u — div Jaj
or
cu , . 3
Y0 70 grad u = — div Juir 3

Du
— =a Vi +adV

D~ ©
where (Du/Dr) = (¢u/ot) + r grad «,
substantial derivative of w.

In the same way we get the heat-transfer
equation

i.e. the

D«
— = a V¥ + (=

e ol )

t The above equations (6) and (7) are similar to those
of Luikov and Mikhailov describing heat and mass trans-
fer in moving solutions. These equations are

de )
=av¥ = oDk VZpup (@)

dr

dp1o .

-=— =DV2p1o - cDV¥ (b)

dr

where d/dr = &/¢r -~ v grad.
The above equations can be written as
d¢ dp1o

d—T—(a—a-/uD)V[-_ ok —— v ©)
dp1o 5 , » .
= DYp10+ oD V¥ (d)
dr

In this form the equations describe the heat and mass
transfer in binary gas mixtures without sources (/; = 0).
Reference A. V. Luikov and Y. A. MIKHAILOV, Theory of
Energy and Mass Transfer (Russian), 2nd ed., p. 48 (1963)
and equations (2.1.86) and (2.1.87). Tt is seen that the
only difference between the equations (¢) and (d) and (6)
and (7) is the presence of a total derivative in the last
term on the right-hand side of (¢) instead of partial
derivative occurring in (7).
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3. THE PROBLEM
The problem to be treated here may be stated
as follows:

Moisture (liquid or vapour) is filtrated through
a porous circular cylinder under the action of
hydrostatic pressure transporting along the
cylinder-axis. Filtration (molar) transfer of
moisture and heat prevail over molecular trans-
fer (by mass diffusion and heat conduction) in
the axial direction. The velocity of molar transfer
is assumed constant and equal to V; (constant).
Determine non-stationary fields of moisture con-
tent and temperature.

Mathematically:
cu cu Su lae
== Vi=—=da ( .)+—,—) +
cr ¢z ot orer
5 ‘&2t N 1 Ct) g
“ \573 Trer (8)
cr ct ‘et 1ét cu
LY, =gl L _
cr Ve gz ¢ (‘Er2 Y re ) (GP/C) ®)
0<r<R t>0 >0
Initial conditions
u(r, z,0) = wy (10)

wr,,0) =1t |

Boundary conditions
wWRz, D= )
(Rozn=n | (b
u(r,0,7) =up ) -
(0,7 =1 | (12)
4., SOLUTION OF THE PROBLEM
The finite Hankel transform of a function
u(r, z, 7) is given by u*(s, z, 7), Sneddon [2]
R
w*(s, z, 7y = | u(r, =, 7y r Jo(rs) dr (13)
0
where Jp is the Bessel function of first kind and of
zero order and s is the root of the characteristic
equation
Jo(Rs) =0 (14

Multiplying the equations (8) and (9) throughout
by rJo(rs) and integrating with respect to r taking
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into consideration the conditions (11), the above
equations give

ou* Su* .
= + V;«a? = q’ RsJi(Rs) uy — a’ s> u*
4+ a’8 Rs Ji(Rs)ty — a’ 8s2t* (13)
3[* or*
5 + Viegs F = a Rs Ji(Rs) 11 — as>t* +
(EP/C) -57 (16)

The above equations are to be solved subject
to the following conditions which have been
obtained by applying the finite Hankel transform
to the initial conditions (10) and boundary con-
ditions (12).

u* = uf = up(R/s) Ji(Rs)
t* = to = t1(R/s) J1(Rs) } >0 (7
w* = uy = ug(R/[syJ1(Rs)
t* = to = to(R/[s) J1(Rs) }'r >0 (18)

In this problem it has been found convenient
to apply the Laplace transform with respect to z
instead of ». We define the Laplace transform of

flr, z, 7) as f{r, p', ) where
f(r’p” T):: j:f(r!Z’T)exp[_P,Z]dZ (19)

Applying the above transform to equation (15)
and (16), we get
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du* —
E“; — Vip'e® — uo (R]s)Ji(Rs) =
a’ Rs Ji(Rs) (urfp’) — @’ s2 u* +
a8 RsJy(Rs) (11/p’) — a’ 8 s2¢%  (20)
dr*
= + Ve [p't* — to (R/s)J1(Rs)} =
aRsJi(Rs) (n/p)) — as? t* +
(ep/c) (du*/d7) 21
with initial conditions
—_ R 3
” FD = Ji(Rs) |
R > (22)
_ !
* — . _
! —p, 5 Jl(RS)

Eliminating 7* between simultaneous differ-
ential equations (20) and (21) we get a single
second order equation
d2u*
d-2

du*
dr

€p

+(2p’Vz+(a+a’)sz+?a 85)

@ Vet as) PVt asd)u*

= p'V2uo (R/s) J1(Rs) + aa’Rs® Ji(Rs)(u1/p")
+ V:a’Rs Ji(Rs) uy

+ Vza’ & Rs Ji(Rs)(t1 — to) (23)

The solution of this equation admissible to the
problem and satisfying the transformed initial
conditions (22) is given below:

Nexp[— Hr —p' Vit — (7/2) v/(4" + BpY))

Ut =4 ——
P V(4" + Bp)
exp [— Hr — p’ Vor — (#/2) /(4" 4 B’
— Al Ve~ oy By R 2 A T B )
U R , , s g €XP [— Hr — p'Vor — (7[2) /(4" + B'p)]
where
A1p? + A2p’ + A3
= 2
p'(Bip’® + Bap’ + B3) 25)
Ay = VZuo (R/[s)Ju(Rs) (26)

Az = V,[@'RsJ; (Rs) uy + '8 Rs Jy(Rs) (1 — 1o) + aRs Ju(Rs) o]

27)
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Az = aa’ Rs3J1(Rs) uy (28) of applying the inversion theorem with respect
to =, which is
By =13 )
I yrixe
By =V, (a ~ a)s2 29 1 . ‘A dnt (3
“xa R T W P e R e
B3 = aa’ s J Ui

N = a’ RsJ1(Rs) (u1 — up) The inversion of the various terms in the righi-
+— a8 RsJ1 (Rs) (1. — to) (30) hapd side of equation (24) tht} respect to - is
quite cumbersome and we refrain from explain-
A" = st{(a — a’)? + 2a’8 (ep/c) (a + a) ing the same in detail for the sake of brevity.
— (e a? 87 (31) It can be noted, however, that the inversion in
‘ respect of all the terms on the right-hand side of
B =4V, a 652 (ep/c) (32) equation (24) excepting the first, has been effected
by application of the convolution theorem
also Churchill [3]. As a result of the inversion with
H=13(@+ a)s®+ (t ep/c)a’ds2  (33) Tespectto z, it is found that the solution breaks
into two parts, one valid for the region z << V=
These substitutions have been effected for ease and the other for the region 1 > V.~

1 CL2 - 20 4 ° !
(s, z, 7) = 7;_, {:;’83 -+ 541 a&al‘_’: B)_{h Aaexp faz] + A8 B.ggA_'Ba)T Aaexp [BZ]J < (35
where
_ a’s?
a — 7
as?
B=— 7
h= V,r
and
1 A A1a® + Asa 2 b
W (s, 2, 7) = ;s [&‘; LA a?; ~zﬁ)+ Asexp [az] +:41;’>’ ;(%A_zi)+ Asexp [ﬂzq n
1 Z ,r Az = (A BB e + Lo — (a BoBO]
7exp [— Hrl | (e —8) y
) . [Az—(A132/B1)]_/9+[A3—(AlBs/B1)] exp [8A]
LT ) pIRAL]

VB (E = A — h)

A8 A8 -+ A
llg ‘B"E‘g _-Ba) 3eXp [B/\]] X ( (36)

.
|
exp {[— (4'/B) (z — A — B)] — [2B/16(z — X — h)]} JL
_F

i H
Vgexp[— 7]

z

+ exp [al]

jr[_@ Ara? + Asa + As
Y-l o =B

I
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exp {— (4'/B) (z — A — h) — [2B'/16(z — A —
VvV [#B(z— A —h)]

"TrB expl— (A7/B) A — (2B/16)
ot 11| o9l W1~ FI6N

(36)

”’”} d\ + b uo (RIS) Ji(Rs)} x

dx — 17272 x

As  A1a® + Aza + A3 A1 + A28 + As
exp [— Hr]

Py R ey e - (R [M] X
B’ _exp {— (4'/B) z—A—h)— [*2B’/16(z — A— A} A
4z = A—h) VrB(z — A — h) }

T v ©

A'|B A — 2B'[16)]
V@B N

[Huo (R/s) Ju(Rs) + N]exp [— Hr] J exp [~

0

da

z>h

-

u(r, z, ¥) can now be obtained from u*(s, z, ) by the application of the inversion theorem for finite
Hankel transform stated as

J
27 = 2 Zf* 5220 7) Ty o7

where 5; are the roots of the equation (14). Eliminating u* from equation (24) with the help of
differential equation (20) and proceeding for 7* exactly as in the case of u*, we get on application
of the Laplace inversion theorem with respect to z, two solutions valid for two regions z < 4 and
z > h as below

—q 85 t* = % [%% exp [az] + E(TBB——% exp [BZ]}
a’ s2[As Aia? + Asa + As A1f® + A28 + A3
[ Ty e+ M e
— @ Rs Ji(Rs)uy — a’8Rs i(Rs) 11 z < h (38)
where
C1 = Vi[a’ Rs J1(Rs) (u1 — uo) + a’é RsJy (Rs) (1 — t)] (39)
Cz = aa’Rs3J1(Rs)(uy — uo) (40)
and
— a'ds? t* = [HN—{-A1 (H- —%-’) —/—Eas H— a.s'?NJ exp[ — H7] x
B
z—h
exp [—(4’/B) X — (s2B’/16 X)) 1(,,41
J V/ET) dA+§(as-E+N) exp[ — Hr] %
B _exp [—(4'MB) — (2B/16))] 1/ B
J; ax VEED d)\+T/:_,(a 2V, + -4———HV=) exp[ — Hr] X @
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&

[42 = (A1B2/B1)] o + [ds — (4,B3/B)]
(@—58)

(A/B)(z— A=) —

exp {—

pla

2816 — A= R}
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N+

(A2 — (A1By/BD)3 =+ [As — (41By/BY)]
G = |

exp [ﬁ/\]} X

1
VZ

A13 + AsB + As

,

A
as?H— H?+ — :

$eet-m ([

a

VI[mB(z — A — ) J

exp {— (4’| B’

A1a2 + A2CL ‘{"’ A3 , :
. B) p [a/\] e

Yz—A—h)—[2B/16(z — A — h)])ld\—

!

-+

ala

sy exp 18]

— (A1Bs/B1)] a + |43 — (AlB3/Bl)]

VIrB'(z — A= m) J

et — s | [

{d2 — (A1B2/B1)] B + [As — (A1Bs/B))]
B—a)

exp {— (4'/B) (z — A—h) — [r2B/16(z — X —

(e —B)

€Xp [,8)\]] X F—;— ‘

xp [ad] + b (41)
B
A

722

as-

h)

As | Ara? +— dsa — A3

VI[7B(z — A — h)]

A /g_gg A_ZBQ;— As exp [,32]}

Aja? 4+ Asa + Az

A
i exp [aA] +

re2

as
_E_Vz.zexp[_

A1 + Asf + A3

o _
}d“ 72 LB" P

H‘I’] X

exp [az] +
B +

il

<f
L a(a — B)

exp{—(4'/BY(z—A—h)—

S e 93]

[(2B/16G = A= ] |\

4z—A—h)

1 [[A 2 — (41B2/B1)] o« + [A3 — (A1B3/By)

Vs (@—pB)

(42 — (41B2/B1)] B + [A3 — (A1B3/B1)] .
B—a

VB (z — X

The application of Hankel inversion theorem

2
t(r, zZ, T)=-E§ Z

S¢

] exp

Xp [ﬂz]] — a'Rs J1(Rs)uy — a’8RsJ1(Rs)t1.

— ]

[az] +

z>h
(37) to t*(s, z, 7) gives

Jo(rS;)

*(S z, T)JZ(RSz) (42)

5. RESULTS
In this paper the equations governing the com-
bined heat and mass diffusion in a porous
medium have been considered taking into account
the molar heat and mass transfer due to the

motion of the moisture in the capillaries of the
porous body at a constant velocity. A problem
concerning the heat and mass transfer in a semi-
infinite porous circular cylinder has been
studied under the boundary conditions of the
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Résumé—Les équations de transport de chaleur et de masse de Luikov et Mikhailov pour les corps

poreux ont été modifiées pour y inclure le transport de chaleur et de masse molaire (hydrodynamique}.

Un probléme traitant du transport de chaleur et de masse combiné, molaire et moléculaire, dans un

corps poreux cylindrique semi-infini avec des conditions aux limites de premiére espéce (potentiels de

transport de chaleur et de masse constants sur la surface) a été étudié en négligeant la conduction de la

chaleur et la diffusion de la masse dans la direction axiale. Les équations ont été résolues 4 l'aide des
transformées de Laplace et de Hankel.

Zusammenfassung—Luikov’s und Mikhailov's Stoff- und Wirmeiibertragungsgleichungen fir
pordse Korper wurden abgewandelt, um den molaren (hydrodynamischen) Wirme- und Stoffiiber-
gang mit einzuschliessen. Unter Vernachldssigung der Wirmeleitung und der Stoffdiffusion in
axialer Richtung wurde ein Problem untersucht, das sich mit der Kombinierten der molaren und
molekularen Wirme- und Stoffiibertragung in einem halbunendlichen sylindrischen pordsen Korper
bei Grensschichtbedingungen erster Art (konstantes Wiérme- und Stoffiibertragungspotential an der
Oberfliche) befasst. Die Gleichungen wurden durch Verwendung von Laplace und Hankeltrans-
formationen geldst.

ABHOTANMA— Y PaBHEHIIA TEII0-H MACCONEPEHOCA B MOPHCTHIX TETAN, BHBEIeHHbIE - IBIKOBBIM

i MuxaitzossiM, npeoSpasoBaHbL € YHETOM MOTAPHOrO {TUIPOJUHAMIMECKOrD) MepeHoca

TeTIa it BeleCTBA. PaccMoTpena 3aJavya O CIOMHOM MOJIAPHOM M MOJEKYIADHOM NepexHoce

Tengaa U BelecTsa B ﬂOH)‘ﬁECHOHe‘lHOSI nopucm.\t unmm:xpe npn FpaHIl‘(Hle YCaoBuaAX

MePBOro poJa (HOCTOAHHBIE MOTEHUHAEl TEMT0-H MACCONEPEHOCA HA MOBEPXHOCTI) §e3 yyeTa

TemI0NPOBOIHOCTH U Iuddysui BemecTsa B 0CEBOM HAIPABIEHMI. Y PaBHeHUA peIUeHLl ¢
novoupio npeodpazosanuit Jamtaca u XaHkelnA.

H.M.~20



